Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 3(1): vbad102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600845

RESUMO

Summary: Artificial intelligence (AI)-driven laboratory automation-combining robotic labware and autonomous software agents-is a powerful trend in modern biology. We developed Genesis-DB, a database system designed to support AI-driven autonomous laboratories by providing software agents access to large quantities of structured domain information. In addition, we present a new ontology for modeling data and metadata from autonomously performed yeast microchemostat cultivations in the framework of the Genesis robot scientist system. We show an example of how Genesis-DB enables the research life cycle by modeling yeast gene regulation, guiding future hypotheses generation and design of experiments. Genesis-DB supports AI-driven discovery through automated reasoning and its design is portable, generic, and easily extensible to other AI-driven molecular biology laboratory data and beyond. Availability and implementation: Genesis-DB code and installation instructions are available at the GitHub repository https://github.com/TW-Genesis/genesis-database-system.git. The database use case demo code and data are also available through GitHub (https://github.com/TW-Genesis/genesis-database-demo.git). The ontology can be downloaded here: https://github.com/TW-Genesis/genesis-ontology/releases/download/v0.0.23/genesis.owl. The ontology term descriptions (including mappings to existing ontologies) and maintenance standard operating procedures can be found at: https://github.com/TW-Genesis/genesis-ontology.

2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845013

RESUMO

Almost all machine learning (ML) is based on representing examples using intrinsic features. When there are multiple related ML problems (tasks), it is possible to transform these features into extrinsic features by first training ML models on other tasks and letting them each make predictions for each example of the new task, yielding a novel representation. We call this transformational ML (TML). TML is very closely related to, and synergistic with, transfer learning, multitask learning, and stacking. TML is applicable to improving any nonlinear ML method. We tested TML using the most important classes of nonlinear ML: random forests, gradient boosting machines, support vector machines, k-nearest neighbors, and neural networks. To ensure the generality and robustness of the evaluation, we utilized thousands of ML problems from three scientific domains: drug design, predicting gene expression, and ML algorithm selection. We found that TML significantly improved the predictive performance of all the ML methods in all the domains (4 to 50% average improvements) and that TML features generally outperformed intrinsic features. Use of TML also enhances scientific understanding through explainable ML. In drug design, we found that TML provided insight into drug target specificity, the relationships between drugs, and the relationships between target proteins. TML leads to an ecosystem-based approach to ML, where new tasks, examples, predictions, and so on synergistically interact to improve performance. To contribute to this ecosystem, all our data, code, and our ∼50,000 ML models have been fully annotated with metadata, linked, and openly published using Findability, Accessibility, Interoperability, and Reusability principles (∼100 Gbytes).

3.
Proc Natl Acad Sci U S A ; 116(36): 18142-18147, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31420515

RESUMO

One of the most challenging tasks in modern science is the development of systems biology models: Existing models are often very complex but generally have low predictive performance. The construction of high-fidelity models will require hundreds/thousands of cycles of model improvement, yet few current systems biology research studies complete even a single cycle. We combined multiple software tools with integrated laboratory robotics to execute three cycles of model improvement of the prototypical eukaryotic cellular transformation, the yeast (Saccharomyces cerevisiae) diauxic shift. In the first cycle, a model outperforming the best previous diauxic shift model was developed using bioinformatic and systems biology tools. In the second cycle, the model was further improved using automatically planned experiments. In the third cycle, hypothesis-led experiments improved the model to a greater extent than achieved using high-throughput experiments. All of the experiments were formalized and communicated to a cloud laboratory automation system (Eve) for automatic execution, and the results stored on the semantic web for reuse. The final model adds a substantial amount of knowledge about the yeast diauxic shift: 92 genes (+45%), and 1,048 interactions (+147%). This knowledge is also relevant to understanding cancer, the immune system, and aging. We conclude that systems biology software tools can be combined and integrated with laboratory robots in closed-loop cycles.


Assuntos
Biologia Computacional , Regulação Fúngica da Expressão Gênica , Robótica , Saccharomyces cerevisiae , Software , Biologia de Sistemas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
PLoS One ; 11(4): e0154556, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27128319

RESUMO

The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.


Assuntos
Ontologias Biológicas , Animais , Ontologias Biológicas/organização & administração , Ontologias Biológicas/estatística & dados numéricos , Ontologias Biológicas/tendências , Biologia Computacional , Bases de Dados Factuais , Humanos , Internet , Metadados , Semântica , Software
5.
J Biomed Semantics ; 6: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682035

RESUMO

The bio-ontologies and phenotypes special issue includes eight papers selected from the 11 papers presented at the Bio-Ontologies SIG (Special Interest Group) and the Phenotype Day at ISMB (Intelligent Systems for Molecular Biology) conference in Boston in 2014. The selected papers span a wide range of topics including the automated re-use and update of ontologies, quality assessment of ontological resources, and the systematic description of phenotype variation, driven by manual, semi- and fully automatic means.


Assuntos
Ontologias Biológicas , Fenótipo , Humanos
6.
J R Soc Interface ; 12(104): 20141289, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25652463

RESUMO

There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.


Assuntos
Desenho de Fármacos , Reposicionamento de Medicamentos , Doenças Raras/tratamento farmacológico , Tecnologia Farmacêutica/tendências , Algoritmos , Antineoplásicos/uso terapêutico , Automação , Avaliação Pré-Clínica de Medicamentos , Humanos , Malária Vivax/tratamento farmacológico , Modelos Estatísticos , Plasmodium vivax/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Análise de Regressão , Reprodutibilidade dos Testes , Software , Medicina Tropical
7.
BMC Bioinformatics ; 15 Suppl 14: S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25472549

RESUMO

BACKGROUND: The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2)protocols. METHODS: We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. RESULTS: The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. CONCLUSIONS: The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.


Assuntos
Ontologias Biológicas , Mineração de Dados , Software , Processamento Eletrônico de Dados , Idioma , Reprodutibilidade dos Testes , Semântica
8.
J Biomed Semantics ; 4 Suppl 1: S7, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23734675

RESUMO

The theory of probability is widely used in biomedical research for data analysis and modelling. In previous work the probabilities of the research hypotheses have been recorded as experimental metadata. The ontology HELO is designed to support probabilistic reasoning, and provides semantic descriptors for reporting on research that involves operations with probabilities. HELO explicitly links research statements such as hypotheses, models, laws, conclusions, etc. to the associated probabilities of these statements being true. HELO enables the explicit semantic representation and accurate recording of probabilities in hypotheses, as well as the inference methods used to generate and update those hypotheses. We demonstrate the utility of HELO on three worked examples: changes in the probability of the hypothesis that sirtuins regulate human life span; changes in the probability of hypotheses about gene functions in the S. cerevisiae aromatic amino acid pathway; and the use of active learning in drug design (quantitative structure activity relation learning), where a strategy for the selection of compounds with the highest probability of improving on the best known compound was used. HELO is open source and available at https://github.com/larisa-soldatova/HELO.

9.
J Biomed Semantics ; 4 Suppl 1: I1, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23735191

RESUMO

Over the 15 years, the Bio-Ontologies SIG at ISMB has provided a forum for discussion of the latest and most innovative research in the bio-ontologies development, its applications to biomedicine and more generally the organisation, presentation and dissemination of knowledge in biomedicine and the life sciences. The seven papers and the commentary selected for this supplement span a wide range of topics including: web-based querying over multiple ontologies, integration of data, annotating patent records, NCBO Web services, ontology developments for probabilistic reasoning and for physiological processes, and analysis of the progress of annotation and structural GO changes.

10.
J Biomed Semantics ; 3 Suppl 1: I1, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22541591

RESUMO

Over the 14 years, the Bio-Ontologies SIG at ISMB has provided a forum for discussion of the latest and most innovative research in the bio-ontologies development, its applications to biomedicine and more generally the organisation, presentation and dissemination of knowledge in biomedicine and the life sciences. The seven papers selected for this supplement span a wide range of topics including: web-based querying over multiple ontologies, integration of data from wikis, innovative methods of annotating and mining electronic health records, advances in annotating web documents and biomedical literature, quality control of ontology alignments, and the ontology support for predictive models about toxicity and open access to the toxicity data.

11.
J Biomed Semantics ; 2 Suppl 2: I1, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21624154

RESUMO

Over the years, the Bio-Ontologies SIG at ISMB has provided a forum for discussion of the latest and most innovative research in the application of ontologies and more generally the organisation, presentation and dissemination of knowledge in biomedicine and the life sciences. The ten papers selected for this supplement are extended versions of the original papers presented at the 2010 SIG. The papers span a wide range of topics including practical solutions for data and knowledge integration for translational medicine, hypothesis based querying , understanding kidney and urinary pathways, mining the pharmacogenomics literature; theoretical research into the orthogonality of biomedical ontologies, the representation of diseases, the representation of research hypotheses, the combination of ontologies and natural language processing for an annotation framework, the generation of textual definitions, and the discovery of gene interaction networks.

12.
J Biomed Semantics ; 2 Suppl 2: S9, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21624164

RESUMO

BACKGROUND: Hypotheses are now being automatically produced on an industrial scale by computers in biology, e.g. the annotation of a genome is essentially a large set of hypotheses generated by sequence similarity programs; and robot scientists enable the full automation of a scientific investigation, including generation and testing of research hypotheses. RESULTS: This paper proposes a logically defined way for recording automatically generated hypotheses in machine amenable way. The proposed formalism allows the description of complete hypotheses sets as specified input and output for scientific investigations. The formalism supports the decomposition of research hypotheses into more specialised hypotheses if that is required by an application. Hypotheses are represented in an operational way - it is possible to design an experiment to test them. The explicit formal description of research hypotheses promotes the explicit formal description of the results and conclusions of an investigation. The paper also proposes a framework for automated hypotheses generation. We demonstrate how the key components of the proposed framework are implemented in the Robot Scientist "Adam". CONCLUSIONS: A formal representation of automatically generated research hypotheses can help to improve the way humans produce, record, and validate research hypotheses. AVAILABILITY: http://www.aber.ac.uk/en/cs/research/cb/projects/robotscientist/results/

13.
J R Soc Interface ; 8(63): 1440-8, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490004

RESUMO

The reuse of scientific knowledge obtained from one investigation in another investigation is basic to the advance of science. Scientific investigations should therefore be recorded in ways that promote the reuse of the knowledge they generate. The use of logical formalisms to describe scientific knowledge has potential advantages in facilitating such reuse. Here, we propose a formal framework for using logical formalisms to promote reuse. We demonstrate the utility of this framework by using it in a worked example from biology: demonstrating cycles of investigation formalization [F] and reuse [R] to generate new knowledge. We first used logic to formally describe a Robot scientist investigation into yeast (Saccharomyces cerevisiae) functional genomics [f(1)]. With Robot scientists, unlike human scientists, the production of comprehensive metadata about their investigations is a natural by-product of the way they work. We then demonstrated how this formalism enabled the reuse of the research in investigating yeast phenotypes [r(1) = R(f(1))]. This investigation found that the removal of non-essential enzymes generally resulted in enhanced growth. The phenotype investigation was then formally described using the same logical formalism as the functional genomics investigation [f(2) = F(r(1))]. We then demonstrated how this formalism enabled the reuse of the phenotype investigation to investigate yeast systems-biology modelling [r(2) = R(f(2))]. This investigation found that yeast flux-balance analysis models fail to predict the observed changes in growth. Finally, the systems biology investigation was formalized for reuse in future investigations [f(3) = F(r(2))]. These cycles of reuse are a model for the general reuse of scientific knowledge.


Assuntos
Pesquisa Biomédica/métodos , Genômica/métodos , Disseminação de Informação/métodos , Saccharomyces cerevisiae/genética , Simulação por Computador , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Modelos Teóricos , Biologia de Sistemas/métodos
15.
J Biomed Semantics ; 1 Suppl 1: S7, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20626927

RESUMO

BACKGROUND: Experimental descriptions are typically stored as free text without using standardized terminology, creating challenges in comparison, reproduction and analysis. These difficulties impose limitations on data exchange and information retrieval. RESULTS: The Ontology for Biomedical Investigations (OBI), developed as a global, cross-community effort, provides a resource that represents biomedical investigations in an explicit and integrative framework. Here we detail three real-world applications of OBI, provide detailed modeling information and explain how to use OBI. CONCLUSION: We demonstrate how OBI can be applied to different biomedical investigations to both facilitate interpretation of the experimental process and increase the computational processing and integration within the Semantic Web. The logical definitions of the entities involved allow computers to unambiguously understand and integrate different biological experimental processes and their relevant components. AVAILABILITY: OBI is available at http://purl.obolibrary.org/obo/obi/2009-11-02/obi.owl.

16.
J Integr Bioinform ; 7(3)2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20375446

RESUMO

The paper presents an ontology for the description of Drug Discovery Investigation (DDI).This has been developed through the use of a Robot Scientist "Eve", and in consultation with industry. DDI aims to define the principle entities and the relations in the research and development phase of the drug discovery pipeline. DDI is highly transferable and extendable due to its adherence to accepted standards, and compliance with existing ontology resources. This enables DDI to be integrated with such related ontologies as the Vaccine Ontology, the Advancing Clinico-Genomic Trials on Cancer Master Ontology, etc. DDI is available at http://purl.org/ddi/wikipedia or http://purl.org/ddi/home.


Assuntos
Descoberta de Drogas , Gestão da Informação , Robótica
17.
Autom Exp ; 2: 1, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20119518

RESUMO

We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist.

19.
Science ; 324(5923): 85-9, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19342587

RESUMO

The basis of science is the hypothetico-deductive method and the recording of experiments in sufficient detail to enable reproducibility. We report the development of Robot Scientist "Adam," which advances the automation of both. Adam has autonomously generated functional genomics hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses by using laboratory automation. We have confirmed Adam's conclusions through manual experiments. To describe Adam's research, we have developed an ontology and logical language. The resulting formalization involves over 10,000 different research units in a nested treelike structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical description. This formalization describes how a machine contributed to scientific knowledge.


Assuntos
Inteligência Artificial , Automação , Biologia Computacional , Enzimas/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Computadores , Genômica , Linguagens de Programação , Robótica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Software
20.
Bioinformatics ; 24(13): i295-303, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18586727

RESUMO

MOTIVATION: Many published manuscripts contain experiment protocols which are poorly described or deficient in information. This means that the published results are very hard or impossible to repeat. This problem is being made worse by the increasing complexity of high-throughput/automated methods. There is therefore a growing need to represent experiment protocols in an efficient and unambiguous way. RESULTS: We have developed the Experiment ACTions (EXACT) ontology as the basis of a method of representing biological laboratory protocols. We provide example protocols that have been formalized using EXACT, and demonstrate the advantages and opportunities created by using this formalization. We argue that the use of EXACT will result in the publication of protocols with increased clarity and usefulness to the scientific community. AVAILABILITY: The ontology, examples and code can be downloaded from http://www.aber.ac.uk/compsci/Research/bio/dss/EXACT/.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Documentação/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Pesquisa/classificação , Pesquisa/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...